您所在的位置是: 首页-电子器件百科-传统钽电容和新型钽电容之间的区别
体积更小-结合使用高CV钽粉和高 效包装,这些设备为空间受限的应用提供了高容量的紧凑尺寸。低ESR钽电容器,降低ESR一直是钽电容器设计的重要研究方向之一。钽粉的选择和阴极材料的涂覆工艺对电渣重熔有重要影响。这些合金具有热膨胀系数低、成本低、易于制造等优点。通过对铜引线框架材料加工工艺的改进,使其可用于钽电容器的设计。\对于紧凑型钽电容器而言,钽粉的演变和包装的改进是提高钽电容器设计容积效率的两个主要因素。
体积更小-结合使用高CV钽粉和高 效包装,这些设备为空间受限的应用(如智能手机、平板电脑和其他手持消费电子设备)提供了高容量的紧凑尺寸。
低ESR钽电容器,降低ESR一直是钽电容器设计的重要研究方向之一。钽粉的选择和阴极材料的涂覆工艺对电渣重熔有重要影响。然而,对于给定的额定值(容量、电压、尺寸),这些因素主要是设计约束,基本上是在当前先进的设备上解决的。降低ESR的两个主要因素是:阴极材料被导电聚合物取代,引线框架材料由Fe-Ni合金改为Cu(Cu)。
传统钽电容器的ESR主要来源于MnO2阴极材料。如图1所示,二氧化锰的导电率约为0.1s/cm。相比之下,导电聚合物(如聚(3,4-亚乙基二氧噻吩)的电导率在100s/cm范围内。电导率的增加直接转化为血沉的显著降低。通过直接比较MnO2和聚合物在6.3v/47μf额定值下的ESR频率曲线,可以看出聚合物设计可以在100kh z时将ESR降低一个数量级。
不同的材料导电率,引线框架材料是另一个可以通过使用更高导电率的材料来改 善电渣重熔的领域。引线框架提供从内部电容器元件到封装外部的电气连接。
镍铁合金(如42合金)一直是引线框架材料的传统选择。这些合金具有热膨胀系数低、成本低、易于制造等优点。通过对铜引线框架材料加工工艺的改进,使其可用于钽电容器的设计。\对于紧凑型钽电容器而言,钽粉的演变和包装的改进是提高钽电容器设计容积效率(体积密度)的两个主要因素。