片状电阻具有三层电极结构,表面电极为银电极,中间电极为镀镍层,外电极为锡涂层,表面电极材料为金属导电,二次保护涂层为非金属无导电性,边界区域的电涂层非常薄或不形成导电层,造成间隙或间隙,特别是当二次保护层的边界不规则时。基体二次保护与电极涂层之间的界面最弱,侵入过程如图1所示。外部硫腐蚀气体通过二次保护层与电极的交界处渗 透到表面电极,使表面电极的银产生硫化化合物Ag2S、FlqT-Ag2S(高电阻),使电阻失去导电性。
片状电阻具有三层电极结构,表面电极为银电极,中间电极为镀镍层,外电极为锡涂层,表面电极材料为金属导电,二次保护涂层为非金属无导电性,边界区域的电涂层非常薄或不形成导电层,造成间隙或间隙,特别是当二次保护层的边界不规则时。基体二次保护与电极涂层之间的界面弱。外部硫腐蚀气体通过二次保护层与电极的交界处渗 透到表面电极,使表面电极的银产生硫化化合物Ag2S、FlqT-Ag2S(高电阻),使电阻失去导电性。
为了避免电阻硫化,好的方法是使用抗硫化电阻(或全膜工艺电阻或插接电阻)。通过扩大二次保护涂层的设计尺寸,使底电极覆盖二次保护,使镍层和锡层在电镀过程中容易覆盖二次保护层,从而使二次保护涂层相对薄弱的边缘直接暴露在空气环境中,从而提高了产品的抗硫化能力。
设计思想是从包封和覆盖的角度出发。Rohm的抗硫化性设计,保护层采用导电树脂胶,覆盖表面电极,延伸到二次保护层。另一种抗硫化性设计是从材料的角度出发,如增加表面电极Ag/Pd浆料中钯的含量,将钯的质量分数从0.5%提高到10%以上。由于浆料中钯含量的增加,钯的稳定性提高了硫化性能。实验结果表明,该方法是有 效的。