变阻器是具有非线性伏安特性的电阻器件。主要用于电路过电压时的电压箝位,吸收剩余电流,保护敏感器件。为了解释变阻器的工作原理,让我们使用下图中显示的VI特性来更好地理解它。变阻器的VI特性曲线与齐纳二极管相似。现在看VI特性,我们看到当压敏电阻上的电压增加到钳位电压以上时,电流突然增加。这是由于称为雪崩击穿的现象造成的,即电子开始在阈值电压以上快速流动,从而降低了电阻并增加了通过变阻器的电流。
变阻器是具有非线性伏安特性的电阻器件。主要用于电路过电压时的电压箝位,吸收剩余电流,保护敏感器件。为了解释变阻器的工作原理,让我们使用下图中显示的VI特性来更好地理解它。
变阻器的VI特性曲线与齐纳二极管相似。它本质上是双向的,因为我们看到它在第一象限和第三象限运行。这一特点使它适合连接到一个电路与交流或直流电源。对于交流电源,这是很容易的,因为它可以工作在任何方向或正弦波的极性。
箝位电压或变阻器电压是指流过变阻器的电流非常低的电压,通常只有几毫安。这种电流通常称为泄漏电流。当箝位电压施加在压敏电阻上时,漏电电流值是由压敏电阻的高电阻引起的。
现在看VI特性,我们看到当压敏电阻上的电压增加到钳位电压以上时,电流突然增加。这是由于称为雪崩击穿的现象造成的,即电子开始在阈值电压(本例中为钳位电压)以上快速流动,从而降低了电阻并增加了通过变阻器的电流。
这有助于在电压瞬变过程中将压敏电阻上的电压增加到大于其额定(钳位)电压的值,例如当电路经历高瞬态电压时,这又会增加电流并起到导体的作用。
从箝位电压的特性可以看出,如果可变电阻的箝位电压几乎相等。这意味着即使在电压瞬变的情况下,它也能像自动调节器一样工作,这使得它更适合它,因为在这种情况下它可以保持电压升高。